Нули функции y sinx. Функции y=sin x и y=cos x и их графики презентация к уроку по алгебре (10 класс) на тему

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

ГРАФИКИ ФУНКЦИЙ

Функция синус


— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная .

Функция нечетная: sin(−x)=−sin x для всех х ∈ R .

Функция периодическая

sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R .

sin x = 0 при x = π·k , k ∈ Z .

sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z .

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z .

Функция косинус


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная .

Функция четная: cos(−x)=cos x для всех х ∈ R .

Функция периодическая с наименьшим положительным периодом 2π :

cos(x+2π· k ) = cos x, где k Z для всех х ∈ R .

cos x = 0 при
cos x > 0 для всех
cos x < 0 для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1 в точках:
Наименьшее значение функции sin x = −1 в точках:

Функция тангенс

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

Функция арксинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок -π /2 arcsin x π /2, т.е. арксинус — функция ограниченная .

Функция нечетная: arcsin(−x)=−arcsin x для всех х ∈ R .
График функции симметричен относительно начала координат.

На всей области определения.

Функция арккосинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок 0 arccos x π , т.е. арккосинус — функция ограниченная .


Функция является возрастающей на всей области определения.

Функция арктангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арктангенс — функция ограниченная .

Функция нечетная: arctg(−x)=−arctg x для всех х ∈ R .
График функции симметричен относительно начала координат.

Функция является возрастающей на всей области определения.

Функция арккотангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арккотангенс — функция ограниченная .

Функция не является ни четной, ни нечетной.
График функции несимметричен ни относительно начала координат, ни относительно оси Оy.

Функция является убывающей на всей области определения.

На этом уроке мы подробно рассмотрим функцию у = sin х, ее основные свойства и график. В начале урока дадим определение тригонометрической функции у = sin t на координатной окружности и рассмотрим график функции на окружности и прямой. Покажем периодичность этой функции на графике и рассмотрим основные свойства функции. В конце урока решим несколько простейших задач с использованием графика функции и ее свойств.

Тема: Тригонометрические функции

Урок: Функция y=sinx, её основные свойства и график

При рассмотрении функции важно каждому значению аргумента поставить в соответствие единственное значение функции. Этот закон соответствия и называется функцией.

Определим закон соответствия для .

Любому действительному числу соответствует единственная точка на единичной окружности У точки есть единственная ордината, которая и называется синусом числа (рис. 1).

Каждому значению аргумента ставится в соответствие единственное значение функции.

Из определения синуса вытекают очевидные свойства.

На рисунке видно, что т.к. это ордината точки единичной окружности.

Рассмотрим график функции . Вспомним геометрическую интерпретацию аргумента. Аргумент - это центральный угол, измеряемый в радианах. По оси мы будем откладывать действительные числа или углы в радианах, по оси соответствующие значения функции.

Например, угол на единичной окружности соответствует точке на графике (рис. 2)

Мы получили график функции на участке Но зная период синуса мы можем изобразить график функции на всей области определения (рис. 3).

Основным периодом функции является Это значит, что график можно получить на отрезке а затем продолжить на всю область определения.

Рассмотрим свойства функции :

1) Область определения:

2) Область значений:

3) Функция нечетная:

4) Наименьший положительный период:

5) Координаты точек пересечения графика с осью абсцисс:

6) Координаты точки пересечения графика с осью ординат:

7) Промежутки, на которых функция принимает положительные значения:

8) Промежутки, на которых функция принимает отрицательные значения:

9) Промежутки возрастания:

10) Промежутки убывания:

11) Точки минимума:

12) Минимум функции:

13) Точки максимума:

14) Максимум функции:

Мы рассмотрели свойства функции и её график. Свойства неоднократно будут использоваться при решении задач.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред.

А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 16.4, 16.5, 16.8.

Дополнительные веб-ресурсы

3. Образовательный портал для подготовки к экзаменам ().

Геометрическое определение синуса и косинуса

\(\sin \alpha = \dfrac{|BC|}{|AB|} \) , \(\cos \alpha = \dfrac{|AC|}{|AB|} \)

α - угол, выраженный в радианах.

Синус (sin α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AB|.

Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла - это абсцисса точки. Синус угла - это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол. На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Нулевой угол \(\LARGE 0^{\circ } \)

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

cos 0 = 1 sin 0 = 0

Рис 4. Нулевой угол

Угол \(\LARGE \frac{\pi}{6} = 30^{\circ } \)

Мы видим прямоугольный треугольник с единичной гипотенузой и острым углом 30° . Как известно, катет, лежащий напротив угла 30° , равен половине гипотенузы 1 ; иными словами, вертикальный катет равен 1/2 и, стало быть,

\[ \sin \frac{\pi}{6} =\frac{1}{2} \]

Горизонтальный катет находим по теореме Пифагора (или, что то же самое, находим косинус по основному тригонометрическому тождеству):

\[ \cos \frac{\pi}{6} = \sqrt{1 - \left(\frac{1}{2} \right)^{2} } =\frac{\sqrt{3} }{2} \]

1 Почему так получается? Разрежьте равносторонний треугольник со стороной 2 вдоль его высоты! Он распадётся на два прямоугольных треугольника с гипотенузой 2, острым углом 30° и меньшим катетом 1.

Рис 5. Угол π / 6

Угол \(\LARGE \frac{\pi}{4} = 45^{\circ } \)

В данном случае прямоугольный треугольник является равнобедренным; синус и косинус угла 45° равны друг другу. Обозначим их пока через x . Имеем:

\[ x^{2} + x^{2} = 1 \]

откуда \(x=\frac{\sqrt{2} }{2} \). Следовательно,

\[ \cos \frac{\pi}{4} = \sin \frac{\pi}{4} =\frac{\sqrt{2} }{2} \]

Рис 5. Угол π / 4

Свойства синуса и косинуса

Принятые обозначения

\(\sin^2 x \equiv (\sin x)^2; \) \(\quad \sin^3 x \equiv (\sin x)^3; \) \(\quad \sin^n x \equiv (\sin x)^n \) \(\sin^{-1} x \equiv \arcsin x \) \((\sin x)^{-1} \equiv \dfrac1{\sin x} \equiv \cosec x \) .

\(\cos^2 x \equiv (\cos x)^2; \) \(\quad \cos^3 x \equiv (\cos x)^3; \) \(\quad \cos^n x \equiv (\cos x)^n \) \(\cos^{-1} x \equiv \arccos x \) \((\cos x)^{-1} \equiv \dfrac1{\cos x} \equiv \sec x \) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

\(\sin(x + 2\pi) = \sin x; \quad \) \(\cos(x + 2\pi) = \cos x \)

Четность

Функция синус – нечетная. Функция косинус – четная.

\(\sin(-x) = - \sin x; \quad \) \(\cos(-x) = \cos x \)

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n - целое).

\(\small < x < \) \(\small -\pi + 2\pi n \) \(\small < x < \) \(\small 2\pi n \)
Убывание \(\small \dfrac{\pi}2 + 2\pi n \) \(\small < x < \) \(\small \dfrac{3\pi}2 + 2\pi n \) \(\small 2\pi n \) \(\small < x < \) \(\pi + \small 2\pi n \)
Максимумы, \(\small x = \) \(\small \dfrac{\pi}2 + 2\pi n \) \(\small x = 2\pi n \)
Минимумы, \(\small x = \) \(\small -\dfrac{\pi}2 + 2\pi n \) \(\small x = \) \(\small \pi + 2\pi n \)
Нули, \(\small x = \pi n \) \(\small x = \dfrac{\pi}2 + \pi n \)
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

\(\sin^2 x + \cos^2 x = 1 \)

Формулы синуса и косинуса суммы и разности

\(\sin(x + y) = \sin x \cos y + \cos x \sin y \)
\(\sin(x - y) = \sin x \cos y - \cos x \sin y \)
\(\cos(x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos(x - y) = \cos x \cos y + \sin x \sin y \)

\(\sin(2x) = 2 \sin x \cos x \)
\(\cos(2x) = \cos^2 x - \sin^2 x = \) \(2 \cos^2 x - 1 = 1 - 2 \sin^2 x \)
\(\cos\left(\dfrac{\pi}2 - x \right) = \sin x \) ; \(\sin\left(\dfrac{\pi}2 - x \right) = \cos x \)
\(\cos(x + \pi) = - \cos x \) ; \(\sin(x + \pi) = - \sin x \)

Формулы произведения синусов и косинусов

\(\sin x \cos y = \) \(\dfrac12 {\Large [} \sin(x - y) + \sin(x + y) {\Large ]} \)
\(\sin x \sin y = \) \(\dfrac12 {\Large [} \cos(x - y) - \cos(x + y) {\Large ]} \)
\(\cos x \cos y = \) \(\dfrac12 {\Large [} \cos(x - y) + \cos(x + y) {\Large ]} \)

\(\sin x \cos y = \dfrac12 \sin 2x \)
\(\sin^2 x = \dfrac12 {\Large [} 1 - \cos 2x {\Large ]} \)
\(\cos^2 x = \dfrac12 {\Large [} 1 + \cos 2x {\Large ]} \)

Формулы суммы и разности

\(\sin x + \sin y = 2 \, \sin \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\sin x - \sin y = 2 \, \sin \dfrac{x-y}2 \, \cos \dfrac{x+y}2 \)
\(\cos x + \cos y = 2 \, \cos \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\cos x - \cos y = 2 \, \sin \dfrac{x+y}2 \, \sin \dfrac{y-x}2 \)

Выражение синуса через косинус

\(\sin x = \cos\left(\dfrac{\pi}2 - x \right) = \) \(\cos\left(x - \dfrac{\pi}2 \right) = - \cos\left(x + \dfrac{\pi}2 \right) \) \(\sin^2 x = 1 - \cos^2 x \) \(\sin x = \sqrt{1 - \cos^2 x} \) \(\{ 2 \pi n \leqslant x \leqslant \pi + 2 \pi n \} \) \(\sin x = - \sqrt{1 - \cos^2 x} \) \(\{ -\pi + 2 \pi n \leqslant x \leqslant 2 \pi n \} \) .

Выражение косинуса через синус

\(\cos x = \sin\left(\dfrac{\pi}2 - x \right) = \) \(- \sin\left(x - \dfrac{\pi}2 \right) = \sin\left(x + \dfrac{\pi}2 \right) \) \(\cos^2 x = 1 - \sin^2 x \) \(\cos x = \sqrt{1 - \sin^2 x} \) \(\{ -\pi/2 + 2 \pi n \leqslant x \leqslant \pi/2 + 2 \pi n \} \) \(\cos x = - \sqrt{1 - \sin^2 x} \) \(\{ \pi/2 + 2 \pi n \leqslant x \leqslant 3\pi/2 + 2 \pi n \} \) .

Выражение через тангенс

\(\sin^2 x = \dfrac{\tg^2 x}{1+\tg^2 x} \) \(\cos^2 x = \dfrac1{1+\tg^2 x} \) .

При \(- \dfrac{\pi}2 + 2 \pi n < x < \dfrac{\pi}2 + 2 \pi n \) \(\sin x = \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = \dfrac1{ \sqrt{1+\tg^2 x} } \) .

При \(\dfrac{\pi}2 + 2 \pi n < x < \dfrac{3\pi}2 + 2 \pi n \) :
\(\sin x = - \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = - \dfrac1{ \sqrt{1+\tg^2 x} } \) .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style="max-width:500px;max-height:1080px;" src="tablitsa.png" alt="Таблица синусов и косинусов" title="Таблица синусов и косинусов" ]

Выражения через комплексные переменные

\(i^2 = -1 \)
\(\sin z = \dfrac{e^{iz} - e^{-iz}}{2i} \) \(\cos z = \dfrac{e^{iz} + e^{-iz}}{2} \)

Формула Эйлера

\(e^{iz} = \cos z + i \sin z \)

Выражения через гиперболические функции

\(\sin iz = i \sh z \) \(\cos iz = \ch z \)
\(\sh iz = i \sin z \) \(\ch iz = \cos z \)

Производные

\((\sin x)" = \cos x \) \((\cos x)" = - \sin x \) . Вывод формул > > >

Производные n-го порядка:
\(\left(\sin x \right)^{(n)} = \sin\left(x + n\dfrac{\pi}2 \right) \) \(\left(\cos x \right)^{(n)} = \cos\left(x + n\dfrac{\pi}2 \right) \) .

Интегралы

\(\int \sin x \, dx = - \cos x + C \) \(\int \cos x \, dx = \sin x + C \)
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

\(\sin x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n+1} }{ (2n+1)! } = \) \(x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + ... \) \(\{- \infty < x < \infty \} \)
\(\cos x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n} }{ (2n)! } = \) \(1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + ... \) \(\{ - \infty < x < \infty \} \)

Секанс, косеканс

\(\sec x = \dfrac1{ \cos x } ; \) \(\cosec x = \dfrac1{ \sin x } \)

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

\(y = \arcsin x \) \(\left\{ -1 \leqslant x \leqslant 1; \; - \dfrac{\pi}2 \leqslant y \leqslant \dfrac{\pi}2 \right\} \)
\(\sin(\arcsin x) = x \)
\(\arcsin(\sin x) = x \) \(\left\{ - \dfrac{\pi}2 \leqslant x \leqslant \dfrac{\pi}2 \right\} \)

Арккосинус, arccos

\(y = \arccos x \) \(\left\{ -1 \leqslant x \leqslant 1; \; 0 \leqslant y \leqslant \pi \right\} \)
\(\cos(\arccos x) = x \) \(\{ -1 \leqslant x \leqslant 1 \} \)
\(\arccos(\cos x) = x \) \(\{ 0 \leqslant x \leqslant \pi \} \)

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

На этом уроке мы подробно рассмотрим функцию у = sin х, ее основные свойства и график. В начале урока дадим определение тригонометрической функции у = sin t на координатной окружности и рассмотрим график функции на окружности и прямой. Покажем периодичность этой функции на графике и рассмотрим основные свойства функции. В конце урока решим несколько простейших задач с использованием графика функции и ее свойств.

Тема: Тригонометрические функции

Урок: Функция y=sinx, её основные свойства и график

При рассмотрении функции важно каждому значению аргумента поставить в соответствие единственное значение функции. Этот закон соответствия и называется функцией.

Определим закон соответствия для .

Любому действительному числу соответствует единственная точка на единичной окружности У точки есть единственная ордината, которая и называется синусом числа (рис. 1).

Каждому значению аргумента ставится в соответствие единственное значение функции.

Из определения синуса вытекают очевидные свойства.

На рисунке видно, что т.к. это ордината точки единичной окружности.

Рассмотрим график функции . Вспомним геометрическую интерпретацию аргумента. Аргумент - это центральный угол, измеряемый в радианах. По оси мы будем откладывать действительные числа или углы в радианах, по оси соответствующие значения функции.

Например, угол на единичной окружности соответствует точке на графике (рис. 2)

Мы получили график функции на участке Но зная период синуса мы можем изобразить график функции на всей области определения (рис. 3).

Основным периодом функции является Это значит, что график можно получить на отрезке а затем продолжить на всю область определения.

Рассмотрим свойства функции :

1) Область определения:

2) Область значений:

3) Функция нечетная:

4) Наименьший положительный период:

5) Координаты точек пересечения графика с осью абсцисс:

6) Координаты точки пересечения графика с осью ординат:

7) Промежутки, на которых функция принимает положительные значения:

8) Промежутки, на которых функция принимает отрицательные значения:

9) Промежутки возрастания:

10) Промежутки убывания:

11) Точки минимума:

12) Минимум функции:

13) Точки максимума:

14) Максимум функции:

Мы рассмотрели свойства функции и её график. Свойства неоднократно будут использоваться при решении задач.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред.

А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 16.4, 16.5, 16.8.

Дополнительные веб-ресурсы

3. Образовательный портал для подготовки к экзаменам ().